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A method is introduced to decrease the computational labor of
the standard level set method for propagating interfaces. The fast
approach uses only points close to the curve at every time step.
We describe this new algorithm and compare its efficiency and
accuracy with the standard tevel set approach. @ 1995 Acagemic
Prass, Inc.

1. A FAST LEVEL SET IMPLEMENTATION

The level set technique was introduced in [9] to track moving
interfaces in a wide variety of problems. It relies on the relation
between propagating interfaces and propagating shocks. The
equation for a front propagating with curvature-dependent
speed is linked to a viscous hyperbolic conservation law for
the propagating gradients of the fronts. The central idea is to
follow the evolution of a function ¢ whose zero-level set always
corresponds to the position of the propagating interface. The
motion for this evolving function ¢ is determined from a partial
differential equation in one higher dimension which permits
cusps, sharp corners, and changes in topology in the zero-level
set describing the interface. (For details, see [11].)

Since its introduction, the level set approach has been used
to compute and analyze a broad array of physical and mathemat-
ical phenomena, including singularities in mean curvature flow
[10, 3] motivated by work in [5], crystal growth and dendrite
solidification [13], combustion [14], shape recognition [7, 6],
minimal surface generation [2], twoe fluid problems [8], and
triple junction problems [1]. In addition it has formed the basis
for several theoretical investigations; see [4]. A review of the
level set approach may be found in [11]. The generality of this
approach makes it very atiractive, especially for problems in
three space dimensions, problems with sensitive dependence
on curvature {such as surface tension problems), and problems
with complex changes of topology.
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For a one-dimensional interface evolving in two space dimen-
sions, the level set algorithm is an O (n*) method per time step,
where nis the number of points in the spatial direction. One draw-
back of the technique stems from the expense; by embedding the
interface as the zero-level set of a higher dimensional function,
a one-dimensional interface problem has been transformed into
atwo-dimensional problem, In three space dimensions, consider-
able computational labor (O (n*)) is required per time step.

In this paper we provide a technique to reduce the computa-
tional labor involved in the level set technique for two space di-
mensions. The central idea is to build an adaptive mesh around
the propagating interface, that is, a thin band of neighboring level
sets, and to perform computation only on these grid points. While
some programming complexity is introduced, the savings in
computational labor are significant and desirable in certain appli-
cations. The first version of this technique was first employed by
Chopp in [2], a later version was developed by Malladi in [7]. In
this paper, we consider a collection of such fast techniques and
perform a detailed study of the accuracy in this approach.

There i1s another, more substantial, reason to focus the level
set update on a narrow band around the zero-level set. In some
problems, the velocity field is only given on the interface; see,
for example, the boundary integral crystal growth formulation
given in [13]. In such problems, the construction of an appro-
priate speed function for the entire domain that identifies with the
speed function of the zero-level set can be a significant modeling
problem; this is known as the “‘extension problem’’; see [7, 13].
By performing a narrow band update of the level set, one need
only construct this speed function close to the zero-level set. This
extension, as will be discussed later, typically need only be per-
formed in a tube width of approximately 6 to 12 grid cells on
either side of the front. Thus, two techniques can be employed.
First, one can simply choose as the velocity at any grid point to
be the same as the value of the velocity the point on the front
closest to the grid point. Second, one might choose, for more
accuracy, a boundary integral which is evaluated off the zero-
level set in the neighborhood of the tube.

1.1. The Standard Level Set Method and
Fast Tube Approach

A brief summary of the level set approach is as follows:
Suppose we wish to follow the evolution of a curve vy, as it
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F1G, 1. The signed distance function, defined on a rectangle.

propagates in a direction normal to itself with speed F. We can
then match the one parameter family of moving curves y, with
a one parameter family of moving surfaces in such a way that
the zero-level sets always yield the moving front. All that
remains is to find an equation of motion for the evolving surface.

Here, we follow the derivation given in [8]. Let vy be a
closed, nonintersecting curve. Assume ¢(x, ), x € R% is a
scalar function such that at time ¢ the zero-level set of d(x, 1)
is the curve y,. We further assume ¢(x, 0) = *d(x), where
d(x) is the distance from x to the curve y,. We use the plus
sign if x is inside vy, and the minus sign if x is outside. As an
example, if the initial front v, is a circle in the (x, y) plane
with radius I, the z = ¢(x, ¥ r = 0) surface given in Fig. 1.

Let cach level set of ¢ flow along its gradient field with
speed F. This speed function should match the desired speed
function for the zero-level set of ¢. Now consider the motion
of some level set ¢(x, t) = C. Let x(#) be the trajectory of a
particle located on this level set, so

d(x{t), 1) = C.

The particle speed 0x/8¢ in the direction # normal to the level
set is given by the speed function F. Thus

d
—x-n:F,
at

where the normal vector n is given by n = —V ¢/|V ¢|. This

is a vector pointing outward, given our initialization of ¢. By
the chain rule,

ax
+—= V=0
b+ V=0

Therefore ¢ is the solution to the differential equation

¢.' - FIV(}{" =0,
¢(x, t =0) = +d(x).
At any time, the moving front -y, is just the zero-level set of ¢.

I the speed function F of the front depends on the curvature,
the curvature may be expressed in terms of ¢ by
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This is called an Eulerian formulation for front propagation,
because it is written in terms of a fixed coordinate system in
the physical domain. There are three advantages to such an
approach. First, since the underlying coordinate system is fixed,
discrete mesh points do not move and the stability problems
that plagued the Lagrangian approximations may be avoided.
Second, topological changes are handled naturally, since the
zero-level set of ¢ need not be simply connected. Third, the
above obviously extends easily to moving surfaces in three
dimensions with appropriate expressions for the curvature (such
as the mean or Gaussian curvature).

The above initial value partial differential equation may be -
approximated using spatial and temporal derivatives on a fixed
grid. Since the evolution equation admits non-differentiable
solutions (that is, corners and cusps in the propagating front),
care must be taken to choose an approximation to the gradient
which produces a conservative scheme satisfying the entropy
solution posed in [10]. Details of such a construction are found
in [11, 9].

Here, we modify the level set technique in a way that saves
substantial computational expense. We consider points close
to the curve at each time. One way to do so is to choose points
that lie less than some given distance away from the curve,
confining computations to these points, gives a tube-like domain
coniaining the zero-level set; see, for example, the tube surface
associated with Fig. 1 is given in Fig. 2.

With such a construction, the work is cut down to O(nk),
where & is the width of the tube. With careful programming,
a commensurate reduction in required memory is possible.

1.2. Building and Evolving the Narrow Band

In this section we present an overview of the fast level
set algorithm.

1.2.1. The Tube

To execute the fast level set approach, we begin by building
the tube, where the ¢ function will be defined. We make a tube
containing all the points with distance to the curve less than
maxDist by calculating the distance function and using that to

FIG. 2. The signed distance function, defined on a mbe.
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select the points. Rather than calculate the distance from each
grid point to the initial curve (which would require O(n%
operations), we extend out from the initial curve approximately
k grid points, and accurately calculate the distance function
only at such points; this requires O(nk?) operations. The ¢
function is then initialized to be the signed distance function.

As the zero-level set corresponding to the front evolves, we
must ensure that it stays within the tube. One way to do so
would be to reconstruct a new tube around the curve at each
time step. This requires at every time step the time-consuming
procedure of finding the front, determining which points make
up the domain, and deciding how to take the differentials at
the edge points.

Instead, we use a given tube for as many iterations as possi-
ble; and devise a technique to trigger tube reinitialization when
the front is close to the edge of the domain. During the life of
a given tube, we can use the same initialization of ¢ and design
a data structure to speed up calculations.

L2.2. Calculating the Derivatives

Particular care must be taken when calculating partial deriva-
tives at the edge points of the tubular domain. We can calculate
the first-order derivatives with central or one-sided differences
at all the points in the domain. We calculate the second-order
derivatives by standard stencils in the interior and get the values
on the edges either by using fixed values on the edges or by
linear extrapolation from the newly computed values. To do
s0, we must smooth the domain to simplify the analysis and
to exclude points, where one-sided differences for the first-
order derivatives are not available or where there is some ambi-
guity about which direction to use for the extrapolation. Higher
order derivatives are evaluated by repeated use of first- or
second-order derivatives.

1.2.3. Rebuilding the Tube

The above algorithm must detect when the curve is getting
too close to the edge of the tube. Detection can not wait until
the curve has moved out of the domain because of accuracy
degradation near the tube edges. Additionally some forms of
constructing the boundary derivatives can result in a slight
instability. This can be avoided through a careful monitoring of
the evolving front. When a new tube is required, we reinitialize,
using the current zero-level set as the initial curve; in the case
of the observed instability we must undo the last time step.

Finally, the computational labar may be further decreased
by noting that the tube is lying inside a rectangular array. If
the front propagates inward, the full square array is unnecessar-
ily large and it is made smaller to decrease both the memory
and the computational time. Conversely, if the front is ex-
panding, the matrix size is increased to make sure that the curve
always remains in the computaticnal domain. A border around
the tube is always kept to ease the calculation of the signed
distance for the next reinitialization.
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1.3. The Algorithm
Given an initial curve,

1. Calculate the signed distance on a tube around the curve.
Precalculate as much as possible to decrease the computation
for each time step.

2. Calculate the update matrix on the domain and evolve
the function ¢ on the tubular domain.

3. If the curve is within a set distance of the tube boundary
or instability is developing on the tube boundary, reinitialize
the surface by going to step 1 and resize the rectangular square
where we do the calculations.

4. Otherwise go to step 2.

In Section 2 we provide the details about the update of the
tube around the front. In Section 3 we present timing results
comparing the narrow band approach with the full level set tech-
nique.

2. TECHNICAL DETAILS

Here we consider two different methods for updating the
values inside the tube. The methods differ in their treatment
of the boundary values on the edge of the tube. The first fixes
the values on the boundary, while the second extends values
from the interior to the edges.

In both cases there are several common steps, such as calcu-
lating the signed distance, finding when to reinitialize the sur-
face and storage techniques. There are some extra technical
difficulties in extending the values to the edges, and they will
be described later.

2.1. Calculating the Signed Distance in a Tube

The signed distance function is defined as the distance from
the given point to the curve and the sign is chosen to be positive
if the point is inside the curve, and negative, if outside. In our
case we want to calculate the function only on the tubular
domain. Outside the domain the value is defined to be ZmaxDist
depending on whether the point lies inside or outside the curve.
This *‘far-field™” value for the signed distance function is useful
when finding the correct signs during next reinitiafization.

As mentioned in the Introduction, calculating the signed
distance function for each grid point is expensive. One alterna-
tive approach is by remembering the geometry of the problem;
at each grid point, one can follow the gradient backwards to
the zero level set to obtain the new distance (see [12]). Near
the front and with careful consideration of places where the
gradient is discontinuous, this can be an effective technique.
Instead, we employ an alternative technique and turn the roles
around. We go along the curve first and then evaluate the
distance function at those points of the grid that lie close to
the curve. This is a technique that can be used in other places,
for example, in the extension of a speed function from the
curve to the tube.
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Thus, we keep an array containing the current minimum
distances. Initially, all the entries are set equal to maxDist.
All segments on the curve are then tested by taking a square
around each such segment and, for all points in that square,
calculating the minimum distance to the curve segment. This
vields the same matrix as if we had calculated the distance
for all possible points and then truncated values at distance
=maxDist. In order to construct the initial tube, we proceed
as follows. First, we initialize all points on the grid to be
equal to maxDisf?. Then, for every curve segment in the
curve, we take a box around the curve segment that includes
all points that could be closer than maxDist from it, and
for every point (i, j) in that box we calculate the square
of the distance from the curve segment to that point. If it
is less than Guid(i, j) we put it into Grid(7, j). Finally,
when all the segments have been treated, we take the square
root of each entry to produce the final matrix.

Finally, we must set the signs correctly. When the curve is
the zero-level set of a known array, the sign of the signed
distance function at (i, j) is the same as the sign of the array
at that point. Therefore we define the points outside the domain
to be *maxDist, even though they are not used at each time
step. During the first initialization of the ¢ field, we determine
the sign by other means, for example, by finding curve intersec-
tions.

2.2. Barriers

Next, we design a scheme to detect when the curve is getting
closer to the edge than a preset minimum howClose.

One obvious technique is to calculate the exact distance
between the curve and the edge. Such an approach is expensive
and would dominate the time spent in each iteration. Note,
however, that there is no real need to know the exact distance;
we need only check whether the distance is less than a certain
mintmum distance or not. Thus, we use the ¢ value of the
surface; if a point on the grid has a negative value it lies outside
the curve, else it lies inside the curve. If the curve is less than
howClose away from the edge, we can find a point less than
howClose away from the edge that was initially inside the curve
but is now outside, or vice versa.

Therefore when we initialize the domain we find the level
sets at heights *(maxDist — howClose). We round those
coordinates to the nearest points on the grid and use the
sign at those points. This constructs a barrier approximately
maxDist — howClose away from the initial curve (howClose
away from the edge). We store two sets of points, the barrier
lying inside (the values should be >0) and the barrier lying
outside. At each time step we check if any of these points
changes sign.

We must also be able to detect when there is an instability
forming at the edge, i.e., if any of the edge points changes
sign. To do this, we have to put edge points into two bins;
those lying inside the curve, and those lying outside the curve.
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2.3. Storage and Data Structures

When the curve gets too close to the edge, we must reinitialize
and prepare a data structure that will speed up the calculation
during the lifetime’ of that tube, This data structure includes;

* Information on the interior of the domain, used whentaking
the derivatives.

+ Information on the total domain, used when updating the
surface.

» The barriers, vsed for deciding when reinitialization is re-
quired.

The majority of the values in the domain are interior points.
This part, where most of the calculation takes place, is essen-
tially contiguous in memory and should be handled in the same
way as in the standard method, that is, as a consecutive list of
numbers in an array. However, the lists are different in length
and start and end at different locations. In our implementation,
the matrix is stored such that (¢, j)y and (i + 1, j) lay side by
side in memory, and for each j coordinate we store the start and
end / coordinates of the list. For example, for the y coordinate
J = 35 we might store {[3, 30], [40, 80]}, meaning that (5, 35)
-+ (30, 35) and (40, 35) - -- (80, 35) are in the interior; in
fact, we just store the offsets of the beginning and end points
of each segment. For the edges and the barriers we store the
offsets from the first point in the array (everything is done with
pointers to allow the resizing). This is considerably faster than
storing the pairs (4, j). Since we know the dimensions of the
array, it is easy to find where (7 = 1, j = 1) is in memory if
we know the location of (4, j).

One of the benefits of the tube method is less memory use.
To make implementation easier the surface is stored in a full
size grid, but all derived guantities, such as curvature and
gradients, only have to be stored at the interior points. For
example, consider a two-dimensional problem on N? grid, in
which one employs one grid for the values of ¢, together
with five additional copies for local variables. Under this new
technique, one full N? copy is retained, together with five copies
roughly of size 12 N. Our experience has shown an approximate
memory savings of a factor of 4 in typical calculations. It is
possible, with extensive bookkeeping, to avoid even the single
copy of the full matrix and to limit all work to the narrow
band; however, the programming is complex.

2.4. Technical Details in Extensions

If the tube values are fixed, this is straightforward. If they
are not fixed and are obtained by interpolating from the interior,
we need to store information how the interpolation should be
done. In this implementation we use a linear imterpolation from
the two closest points in some direction. It is not always possible
to choose these points to be interior points, and some cases
can be ambiguous. For example, let X be an interior point and
O be an exterior point in



OOX X XXX QOCCOCO
XKXOXXXx COOkOOO
KEXEXXK OXXXXXO
KERKOOK  XXHUKXKX
XAEKAXOOD KAEKXRKKXK,

It is not clear how to interpolate the surface at the point
marked by *. However, by removing some points from the
tube it is possible to choose a direction in which the points are
etther interior points or edge points that can be interpolated by
using only interior points, that is,

COXxXxxx COCCOCO
XXOXXxx OCOO000
KX XORK K OXXXXXO
KR EKOOK HXXKXKXX
XRRXXOO XXXKXXX,

This process is called smoothing.

2.4.1. Smoothing

In this implementation we only need to remove points X,
where the neighborhood contains one of the following four pat-
terns:

O O
O%0O ¥ * ¥
O

To remove those effectively we construct a byte map of the
maitrix; the neighborhood of each point is represented by an 8-
bit number where the neighboring points have been assigned
different powers of 2. Bit operations are then used to find out
how the neighborhood looks and if it contains a specific pattern,
as well as to remove points from the neighborhood. As an
example the number 12{ = (01111001}, might correspond to
the neighborhood;

OxQ
x*¥O
XXX,

2.4.2. Choosing Extension Direction

We distinguish between three different types of edge points
when doing the extension. Every edge point belongs to one of
these types.

J. A point is of type 1 if a corner point is the only exterior
point and a diagonal can be exploited using only interior points
when doing the extrapolation.

! By starting at the upper ieft corner and going in a clockwise direction
around X,
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2. A point is of type 2 if a horizontal or vertical direction
can be exploited using only interior points when doing the ex-
trapolation.

3. Apointis of type 3 if one of the side points is an exterior
point and a diagonal can be exploited using interior points or
points of the previous types when doing the extrapolation.

When the edge points have been sorted into these three types,
the extrapotation can be performed by first finding the values
at type 1 and type 2 edge points, and then finding the values
at Lype three edge points. This then requires two sweeps. Each
sweep can be done in any order.

In this immplementation we split the edgepoints into 12 bins,
depending on the type of the point and direction of the exten-
sion. This information is stored along with the domain and
barrier information.

2.4.3. Sorting the Edgepoints

Itis simple to determine the type of a given edgepoint. Assume
that the edgepoint has the coordinate (i, j ). Without loss of gener-
ality, after excluding some neighborhoods, we can assume that
the neighborhood has one of the three following forms:

OxXX O O
HX¥EX X¥X O¥X
HK XX x X

In the first case, the point is either of type | or type 2, in the
second case the point is either of type 2 or type 3, and in the
third case the point is of type 3. More precisely:

+ First case:
L ¥+ 1, 7- lyand (i + 2,7 — 2)are interior
points, put (I, j) into a type 1 bin.

2. Ifpoint (i + 2, j)is in the interior we go to the right,
else we go down. (Because then (i, j — 2) is in the interior).
(i j}is put in a type 2 bin.

« Second case:

1. If (i, j — 2) is an interior point, put (i, j) into a type
2 bin.

2. If{i + 1,7 — 2)is of the form

XK
X¥X
x

H

we can go down to the right. Else we go down to the left, then
we put (/, j) into a type 3 bin.

« In the third case it is possible to go down to the right,
interpolating over points of type 1 or type 2; thus this point is
of type 3.
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2.4.4. Proof

The proof that this algorithm classifies all edge points in-
volves taking all the cases separately and is somewhat tedious
but straightforward. We only show how this is done for one
of the cases.

To do so, we introduce a technigue that is used in proving
all the cases. Imagine an interior point {that is, a point inside
the tube). That point has a well-defined closest point p on the
front that was used to make the domain. Take any point in the
exterior and draw the line which is always equidistant to it and
the interior point. Then we know that p is on the same side of
the line as the interior point. If we take several exterior points,
but always the same interior point, we can restrict the area
where p can lie. This argument, which we all the “‘triangle
argument,”” can be used to show that a ceriain point has to be
an interior point.

As an example, assume that the neighborhood is given sche-
matically by

X
Ox0.

We want to show that the neighborhood in fact must be of
the type

X
X
O*O.

Assume not. Using the triangle argument on the point directly
above the *, we get the following picture:

o

Ox0O

Here, the arrows indicate on which side of the line the
point p has to lie. The symbol X is the point we use in the
triangle argument. This picture gives a contradiction, since it
indicates that p lies inside the triangle; however, we know
that p has to lie further thas maxDist away from all exterior
points.

We now introduce a notation for this argument, and
write

X
X x
O%¥0 — Ox0.

Using the same point, we can add one more interior point on
top. Since we use the same point, we include it on the same
picture and the notation becomes
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X

X
X =

O¥C — O%0.

This example creates a triangle in which p has to lie. Note that

the shape might be more general, such as a rectangle.

Note that the above assumes that a O point is an exterior
point. Since we will remove some edge points, this does not
necessarily have to be true. In such cases, however, two points
to each side will be exterior points, which further reduces the
area where p can le.

Proof. Take the first neighborhood. (The others are simi-
lar.) Either the neighberhood looks like

OXX

WK XK

XX X X X
XX KX
XXX,

in which the point is of type 1, or one of the following,

OX X
XX K

OxXx Oxx Oxx Oxx
KKK XEXK XEXX X¥EXX

OXX
HH KK

XX KX KMHK WX HEKK XKEKNK KHHKHX
O X XX XXO XXX XX XX
O X X xXx0O

in which it is possible to extrapoliate over interior points by
going to the right. Therefore the point is of type 2. For the first
case, the proof consists of

OX X OXX XX OXXXX
KEXK —> XEMK — XEXKX
KX KXY XXXXX XXXMX
X KX XXX X X X
xC xO xQO

The other cases are similar.

3. RESULTS

3.1. Operation Count of the Method

In the standard level set method each step costs at least
O(n?) operations. Each step of the tube method costs O(nk)
operations, where & is the width of the wube. This is because
at each time step we have to calculate the derivatives at O(nk)
points, and then update the array at only O (nk) points.

Reinitializing the domain costs O(nk?), and the bulk of the
work is in computing the signed distance on the tube. Sorting
the points into the different edges and barriers costs O(nk).

The calculation of the signed distance is a fairly simple calcola-
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TABLE 1

dx dt Timings Dimensions Stops Total Error

0.04 Re-4 (5.0, 15.1) (73, 75) 1 25 (2.1e-04, 3.6e-04)
0.02 2e-4 (78.5, 235.8) (149, 149} 1 390 {5.5e-03, 8.7e-05)
0. Se-3 (1300, 3902) (301, 301) 1 6500 {1.3e-05, 2.1e-05)

tion so the constant in front of #k? is fairly small. The signed
distance also has to be calculated infrequently. In practice an
insignificant amount of time is used to calculate the signed
distance, compared to evolving the surface.

3.2. Topological Changes

In Figs. 3 and 4 we run tests to show that the ability to change
topology is preserved. There are approximately 50 timesteps

A Circle Shrinking by Curvature on a Tube
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between each plotted curve. We reinitialized roughly three to
five times between each plotted curve. The tube radius is 12 cells
in each of these examples, and the gridsize is approximately 200

by 200.

3.3. Movement by Curvature

We start with a circle of radius 1 and let it shrink according to
its curvature. The exact solution shows that the curve vanishes at

TABLE 11

Type dx Timings Reinit Stops Total Error
Cave ). Smoothing the update
(6, 3) .04 (2.0,5.3) G0 -2 7.3 (4.6e-4, 1.6e-3)
6,3 0.02 (17, 43) (19, Oy -3 58 {1.8e-4, 7.1e-4}
6.3 0.01 (133, 347) (38, 0) -11 460 (7.0e-5, 3.2e-4)
{12, 5) 0.04 (3.6, 10.3) (3. 0 14 (2.1e-4, 6.1e-4)
(12, 3) 0.02 (30, 80y 7,0 -1 110 (5.5e-5, 2.7e-4)
(12, 5) 0.01 (235, 624) (15, 0) —4 840 (3.3¢-3, 1.6e-4)
6,3 0.04 (2.0,5.3) 9, 0) -2 7.2 (4.6e-4, 1.6e-3)
(12, 6) 0.02 (30, 80) (8. 0) -1 110 (5.5¢-5, 2.9¢-4}
(24, 12) 0.01 (450, 1200} 8. -1 1600 (1.3e-5, 7.0e-5)
Case 2, Smoothing the deriatives
(6. 3) 0.04 (1.9, 5.2) 6, 4) -4 7.0 (4.3c-4, 3.9¢-3)
(6, 3) 0.02 (16.2, 42) {6, 18) -0 57 (8.2e-5, —6.4¢-4)
(6. 3) 0.01 (130, 341 (18, 39) -16 456 (1.8¢-4, 6.5¢-4)
12,5 0.04 (3.5,99 2.2 -1 14 (2.5e-4, 1.2e-3)
(12, 5) 0.02 (29, 79) (1, 13) -2 106 (1.4e-4, 5.0e-4)
(12, 5) 0.0 (231, 611) (2, 40) -8 824 (7.8¢-5, 3.1e-4)
(6, 3) 0.04 (2.0, 5.3) (6, 4) —4 7 (4.3e-4, 3.9¢-3)
(12. 6) 0.02 {29, 78) (1, 13) -3 106 (1.de-4, 5,0e-4)
(24, 12) 0.01 (438, 1163) (2, 34) -7 1580 (5.5e-5, 2.6e-4)
Case 3. Fixed boundary
(6, 3) 0.04 (1.9, 5.1) (9, O) —58 6.5 (9.0e-3, 5.0e-2)
(6, 3) 0.02 (16, 42) (18, 0) —136 55 (3.3e-3, 1.8e-2)
(6, 3) 0.01 (131, 345) (40, 380 480 {(—6.2e-3, —3.2e-2)
(12, 5) 0.04 (3.6, 10.2) 3. 0) -3 14 (1.2¢-4, 3.0e-3)
(12, 5 0.02 {30, 78) {7, 0} —167 100 (7.0e-3, 4.4e-2)
(12, 3 0.01 (232, 607) (15,0 —892 760 (8.7e-3, 4.8e-2)
6, 3 0.04 2.0, 5.2) 9,0 —58 6.5 {5.0c-3, 5.0e-2)
(i2, 6) 0.0z (30, 78) 80 —64 100 (5.2e-3, 2.0e-2)
(24, 12y 0.01 {445, 1190) (8, 0) 85 1600 (—8&8e-4, 5.9¢-3)
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TABLE IV
\/ Expanding with Speed 1 on a Tube
Type dx Timings Reinits Eror

Case |, Smoothing the update

(6, 3) 0.04 (1.2, 4.2) (3.0 (9.7e-4, 2.6e-3)

W (6, 3} 0.02 (29, 10.3) . 0) (4. 8e-4, [.3e-3)

6, 3) 0.01 (7.9, 29) (16, 0) (2.4e-4, 6.6e-4)

(12, 5) 0.04 (2.2, 7.3) {1, 0) (9.7e-4, 2.3e-3)

FIG. 3. Two circles expanding with constant speed. (12, 5) 0.02 (4.8, 17) (3,0 {4.4e-4, 1.2e-3)

(12, 5 0.01 (11.3, 39) (6, 0} (2.2e-4, 6.0e-4)

@, 3) 0.04 (1.1, 4.3) A, 0) (9.7e-4, 2.66-3)

. . (12, 6) 0.02 (4.8, 17) (3.0) (4.de-4, 1,2e-3)

t = 0.5. We compare the exact solution with the computed (24, 12) 0.01 {18, 68) 3, 0) (2. 1g-4, 5.8e-4)

solution at two times, ¢ = 0.1 and ¢ = 0.3, and by also comparing

. , . . Case 2, Smoothing the derivatives
the extinction times. To estimate the distance from the exact

solutions, we calculate the area of the path and get an average (6, 3) 0.04 1.2, 42) G, 0) (3.7e-4, 2.6¢-3)

. (6, 3) 0.02 (2.9, 10.3) (7, 0) (4.8e-4, 1.3e-3)

radius. We run the test rons for dx equal to 0.Q4, 0.02, 0:01. 6. 3) 001 (7.8, 29) (16, 0) (2.4e-4, 6.6e-4)

For each of these step sizes we will compute with tube width az s 004 @3.74) 0o (9704, 2.503)
5 . . N . R A 3, 7. N Te4, 2.5e-

6 and 12 cells and where the tube width is always (.24 units. 1z 5) 0.02 @7. 17) 3.0 (4464, 1.26-3)

For comparison we also run the same test using the standard (|5 s, 0.01 (11, 39) @, 0) (2.2e-4, 6.02-4)
level set technique on a rectangular array. Results are given in

. e 6,3 0.04 (1.1, 4.1) 3,0 (9.7¢-4, 2.6e-3)
Tables [-1V. We show the results of a shrinking spiral in Fig. 5. (12, 6) 002 4717 3. 0) (4 .de.4, 12e-3)
(24, 12) 0.01 (18, 67) (3, 0) (2.1e-4, 5.8¢-4)

3.4. Movement by Constant Speed Case 3. Fixed boundary

We consider an initial circle of radius 1 propagating outward 6, 3 0.04 (1.1, 4.0 3.0 (1.0e-3, 2.82-3)
with speed 1 and perforin the same tests as before. The time (6, 3) 0.02 (2.9, 10.2) (7,0 (5.2e-4, 1.4e-3)
step is fixed to be 0.0008 in all tests. Results are given in Tables (6, 3) 0.01 (7.8,29) 16, 0 (2.6e-4, 7.3e-4)
I-1V. (12, 5 0.04 2.2, 7.2) (1,0 (5.7e-4, 2.5¢-3)

(12, 5) 0.02 (4.7, 16.6) (3. By (4.4e-4, 1.2¢-3)

3.5. Three Alternate Methods (12,5 0.01 (11.1, 38) 6 0) (2.2e-4, 6.0e-4)

We analyze three variations of the method: (1( 2 2 8j8§ ((2_17”4{?;; 8 8} ((};222 ?g:g;
(24, 12) 0.0 (18, 67) 3.0 (2.1e-4, 5 Be-d)

Approach 1. Caiculate the derivatives only in the interior.
Calculate the update matrix by using the derivatives in the
interior and extend the result to the edges to get the update
Mairix.

Approach 2. Use the extension to determine the values of
the derivatives on all of the domain. Use those derivatives to
produce the update matrix on all of the domain.

Approach 3. Fix the values on the edge, and only calculate
the update matrix on the interior,

TABLE I1I

Expanding with Speed | on a Square

dx dt Timings Dimensions Errar e
0.04 8e-4 (33,9.7) (75, 75) (9.7e-4, 2.4e-3)
0.02 8e-4 (13, 38) (149, 149) {d4e-4, 1.2e-3)
0.01 8e-4 (51, 159 (301, 301) (2.1e-4, 5.7e-4)

F1G. 4. Spiral growing with constant speed.
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FIG. 5. Spiral shrinking under curvature.

3.6. Description of Terms in the Tables

Type. (r b} gives the tube radius » in cells and how many
cells the path is allowed to move b cells before it is reinitialized.

Timings. (T,, T,) is the execution time in seconds. The
first number, Ty, is the time it took to run up to ¢ = 0.1, the
second, T3, is the time required to run up to r = 0.3.

Dimensions. This is the dimension of the square matrix.
This is not applicable for the tube method, since the number
of points changes at each reinitialization.

Stops. This is the error in the stopping time. The circle
should vanish at + = 0.5(s, but the numerical curve will not
necessarily vanish at exactly that time. This is how many extra
time steps it took to vanish. Therefore the absolute time would
be 0.50 + dr+Time steps.

Total. Thisis the time it took the curve to vanish, measured
in seconds.
Reinir.  This is the number of times the domain had to be
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reinitialized. The first number of times we reinitialize because
the curve gets too close to the edge of the domain. The second
one is the number of reinitializations due to instability on the
edge.

Error. This is the difference between the exact radius and
the calculated radius. Measured radius = Exact radius + Error,

3.7. Conclusions

Our results indicate that when moving a front with constant
speed, there is no difference in the accuracy of the three different
methods, In the case of flow under curvature, a small improve-
ment is obtained when the values are extended to the edges.
In general, fixed boundary conditions on the edge of the tube
{Approach 3} is adequate for most problers. When extra accu-
racy is required, the best approach seems to be to calculate
the derivatives in the interior by stapdard stencils, use that to
compute the update in the interior, and then extend the values
onto the edges.
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